Use oF HYPER- AND MULTI-SPECTRAL IMAGING
FOR DETECTION OF CHICKEN SKIN TUMORS
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ABSTRACT. Hyperspectral and multispectral imaging techniques were used to detect chicken skin tumors. Hyperspectral
images of eight tumorous chickens were taken in the spectral range of 420 to 850 nm. Principal component analysis was
applied to select useful wavelength bands (465, 575, 705 nm) from the tumorous chicken images. A multispectral imaging
system capabl e of simultaneously capturing three registered images was used to image 60 tumorous and 20 normal chickens.
Multispectral image analysis was performed to generate ratioed images, which were then divided into regions of interest
(ROI's) classified as either tumorous or normal by a veterinarian. Image features for each ROl (coefficient of variation,
skewness, and kurtosis) were extracted for use asinputs to fuzzy classifiers. The fuzzy classifiers were able to separate normal
from tumorous skin with increasing accuracies as more features were used. In particular, use of all three features gave
successful detection rates of 91 and 86% for normal and tumorous tissue, respectively.
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esently, each chicken intended for sale to U.S.
onsumers is required by law to be inspected
post-mortem by a United States Department of
Agriculture/Food Safety and Inspection Service
inspector (USDA/FSIS) for wholesomeness (USDA, 1984).
These inspectors visually and manually inspect poultry
carcasses and viscera online at processing plants. FSIS uses
about 2,200 poultry inspectors to inspect roughly 8 billion
chickens per year in 310 poultry slaughter plants nationwide,
and this volume is growing. Each inspector is limited to a
maximum of 35 birds per minute. Inspectors working at least
8 hours per day in these conditions have a tendency to
develop repetitive motion injuries and attention and fatigue
problems (OSHA, 1999).

Poultry inspection is a complex process. FSIS inspectors
are trained to recognize infectious condition and animal
diseases, dressing defects, fecal and digestive content
contamination, and conditions that are related to many other
consumer protection concerns. In general, diseases and
defects that occur in the processing of poultry could be placed
into several categories. There are diseases/defects that are
localized in nature and those that are generalized or systemic;
i.e. affecting the whole biological system of the bird.
Systemic problems include septicemia and toxemia. Studies
using visible/NIR spectroscopy (Chen et al., 2000) and
reflectance imaging (Park and Chen, 1994; Chao et al., 2000)
have shown good results in inspection for poultry systemic
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diseases. However, localized problems are difficult to detect,
and require not only the use of color (spectral) information
but also spatial information. Examples of localized poultry
diseased/defects include skin tumors and inflammatory
process. An automated system to inspect diseases/defects of
poultry must be able to measure these attributes and eliminate
product that is unwholesome.

Chicken skin tumors are round ulcerous lesions that are
surrounded by a rim of thickened skin and dermis (Calnek
et al., 1991). For high—speed inspection, machine vision isa
solution, but requires advanced sensing capabilities in order
to deal with the variability of a biological product.
Multispectral imaging is key to these advanced techniques.
Studies (Wen and Tao, 1998; Park et al., 1996; Throop and
Aneshandey, 1995) have shown that the presence of defects
is often more easily detected by imaging a one or more
specific wavelengths where the reflectivity of good tissueis
notably different from that of damaged tissue. For example,
skin tumorsin poultry are less reflective in the NIR than good
tissue (Park et al., 1996). The measurable indication may be
amplified, and therefore more easily detected, when more
than one waveband is imaged and the difference or ratio of
the images is measured.

The USDA's Instrumentation and Sensing Laboratory
(ISL) has an ongoing program of developing real time online
systems for poultry inspection. The objectives of this study
were to select wavelengths for a multispectral imaging
system to facilitate analysis of chicken skin tumors, to
process and identify features from multispectral images, and
to design classifiersfor classification of normal chicken skin
tissue and tumors.

MATERIAL AND METHODS
EXPERIMENTAL CHICKEN CARCASSES, |MAGE
M EASUREMENT SYSTEMS
A total of 80 chicken carcasses (20 normal, 60 tumorous)
were collected from a poultry processing plant in Maryland
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over a 2-month period in 2000. Two FSIS veterinarians
identified the conditions of these chicken carcasses at the
plant. The carcasses were tagged according to the
condemnation categories and placed in plastic bags to
minimize dehydration and color changes. The bags were then
placed in coolers, filled with ice, and transported to ISL
(within 2 hours) for the experiments.

Two imaging systems were used. First, a hyperspectral
imaging experiment was conducted to select wavelengths for
later multispectral imaging measurements. An in-house
designed hyperspectral imaging system (Kim et a., 2000),
which consists of a CCD camera system (SpectraVideo,
PixelVision, Oreg.) equipped with an imaging spectrograph
(SPECIM Inspector, Spectral Imaging, Oulu, Finland) was
used for the study. The light source consists of two 21-V,
150-W halogen lamps powered with aregulated DC voltage
power supply (Fiber—Lite A—240P, Dolan—Jenner Industries,
Mass.). A hyperspectral image has two spatial dimensions
and one wavelength dimension. The CCD camera captures
the spectral dimension and one spatial dimension in a scan.
The second spatial dimension is achieved by succeeding
scans of a sample moved on a conveyor belt. The spatial
images were 402 pixels wide perpendicular to the direction
of travel of the conveyor belt and a variable number of pixels
in the direction of travel, depending on the size of the
chicken. This setup resulted in a spatial resolution of lessthan
1 mm. The wavelength dimension contained 120 points space
3.6 nm apart in the 420- to 850-nm region. Each pixel in a
three-dimensional hyperspectral image has a 16-hit
dynamic range.

Eight different tumorous chicken carcasses were imaged
with the hyperspectral system. The samples were placed on
a conveyor belt with an adjustable speed AC motor control.
The image acquisition and recording was performed with a
Pentium—based PC using a genera—purpose imaging
software package (PixelView 3.10, PixelVision, Oreg.).

After the hyperspectral imaging experiment was
completed, and wavelengths selected as described below, a
series of measurements was carried out with a multispectral
imaging system. Chicken images (20 normal, 60 tumorous)
were acquired by a multispectral imaging system consisting
of athree—channel common aperture camera (TV C3, Optec,
Milano, Italy), an illumination chamber, and a computer
equipped with aframe grabber (XPG-1000, Dipix, Ontario,
Canada). The illumination chamber was built as a box with
around-open inlet (7 cm diameter) on the top, through which
the camera was mounted facing downwards. A pair of fiber
optic lights (QDF5048, Dolan—Jenner Industries, Mass.)
equipped with an AC—regulated 150-W quartz—halogen
illuminator (PL841, Dolan—Jenner Industries, Mass.) was
used for illumination. The dual lights were mounted 12 cm
apart and covered with plastic light diffusers, vertical to the
object. Thewalls of the chamber were built with optical grade
black acrylic to avoid uncontrolled light reflections. Each
chicken carcass was placed on a black acrylic sheet mounted
to alaboratory jack for vertical position control. The image
size was 728 x 572 pixels with each pixel represented a
sample area of 0.1 mm2,

The three—channel system is prism based, separating the
image into three broadband images that are acquired
simultaneously in the blue (B), green (G), and red (R) regions
with perfect image registration. Three narrow band filters
(selection described below) are placed between the prism
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assembly and the three CCD’s, respectively, to optimize
contrast between normal and tumorous areas. The images are
8 bits in each channel (gray level values of 0-255).

HYPERSPECTRAL IMAGING, WAVELENGTH SELECTION

Hyperspectral images were used to select wavelengths for
the multispectral imaging system. Eight chicken carcasses
with tumors were scanned to record spectral characteristics
at each point of their surfaces. Preliminary to analysis, image
processing is performed to mask the chicken, separating the
chicken image from the background. Multivariate analysis
utilizing the principal component anaysis (PCA) was
performed using the software ENVI 3.2 (Research Systems,
Inc., Colo.). The PCA method is standard and may be found
in the ENVI manual or an equivalent source, such as MatL ab
or SAS. Spatial regions of interest (ROl defined below),
which contain tumors and surrounding normal skin tissue
were selected. For each ROI in each chicken, the first ten
principal components were extracted from the data. Each
principal component was an image consisting of a weighted
sum of the images at 120 wavelengths according to the
formula

120
E= _le A (1)
1=

where 4, is the image at wavelength number i, and w; is the
weight. (E isalso called an eigenvector. The different princi-
pal components or eigenvectors have different sets of
weights.) The first 10 principal components (for each ROI)
were visually examined, and the one providing the best con-
trast between tumorous and normal skin tissue was selected
for that ROI. Then, for each chicken, from the set of best con-
trasting principal component images, the one showing the
most contrast was again chosen, giving one final eigenvector
(weight set) for each of the eight chickens.

The weight set corresponding to the best contrasting
principal component for each chicken was then applied to the
masked image for that chicken. Identification of the filters
needed for multispectral imaging can be performed by
analysis of the man wavelength contribution to the
eigenvectors.

MULTISPECTRAL IMAGE PROCESSING,
FEATURE EXTRACTION

Multispectral images are analyzed by a sequence of image
processing steps to prepare for the classification. Figure 1
shows the primary steps that take place in extracting desired
tumor regions from raw R, G, and B band image data
(figs. 1c, b, and a, respectively). Thefirst step isto isolate the
chicken object from the rest of the image. An initial chicken
mask is created by binary segmentation of the red-band
chicken image with a threshold value of 40. Due to shading
and shape of the chicken surface some internal holes and
noise regions in the background still remain in the initial
mask. The majority of such unwanted pixels can be removed
and/or filled with a series of morphologica operations
(Dougherty, 1992). Small regions of background noise pixels
are first removed through a7 x 7 opening operation. A 10 x
10 closing operation, followed by a 3 x 3 erosion operation
is performed to fill the internal holes and smooth the edges
of the chicken mask. An example of the final chicken mask
can be seen in Figure 1d.
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Figure 1. Multispectral image processing. (a, b, ¢) Raw images from B,G,R channels, (465—, 575—, 705-nm bands). (d) Mask developed from red
channel. (e, f, g) Images a, b, c after application of mask. (h) Band combination (B/2+G/2)/R. (i) Grid generation. (j) ROI generation.

After the chicken mask is created all analyses and
operations are limited to only those pixels within the mask.
Figures 1g, f, and e illustrate masked chicken images in the
filtered red (R), green (G), and blue (B) channels,
respectively. It is clearly shown that chicken images are
presented differently in R, G, and B channels. Chicken skin
tumor is clearly presented in the B—channel. Lesions
including skin tumor, cuts, and blood clots are exposed in the
G—channel. However, in the R—channel chicken skin is
smooth  without showing lesions. Therefore, the
three—channel images can be combined to generate one
image for feature extraction of chicken skin tumor. A
combination was chosen to average the B— and G— channels
that showed defects of interest. The combination then
included a division by the R—channel, in order to reduce
unimportant image variation. The ratioed image of [(G/2) +
(B/2)] 1 [R] is shown in figure 1h.

A square grid with amesh size of 64 x 64 (4096 pixels) was
placed over each image. The intersection of a square with the
masked chicken image was called aROI (region of interest).
(ROI's containing the edge of the masked chicken image
contains less than 4096 pixels.) ROI’'s were classified into
two categories, normal and tumorous, based on the
veterinarian’s judgment. ROI's classified as normal came
from the 20 normal chickens and non—tumorous areas of the
60 tumorous chickens, for a total of 778 “normal” ROI’s.
“Tumorous’” ROI’s totaled 103 from tumorous aress of the
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tumorous chickens. A training set of ROI’s (100 normal and
52 tumorous) was randomly extracted from the database.
This training set includes roughly half of the tumorous ROI’s.
Only 100 of the normal ROI’s were used in order to make the
numbers of normal and tumorous more equal, resulting a
more even distribution of the Type | and Type Il errors. The
seven classification configurations (defined below) trained
on this subset of 152 samples were then applied to the testing
set consisting of the remaining 729 samples (678 normal and
51 tumorous).

The classification was based on features extracted from
variations in the ratioed intensities within each ROI. These
variations are exploited as image features using the first four
statistical moments (mean, standard deviation, skewness,
and kurtosis, the first two combined into coefficient of
variation).

For each defined ROI, statistical moments are calculated
on the basis of reflectance intensity. The statistical
computation provides mean, variance, standard deviation,
skewness, and kurtosis of a sample population contained in
an n—element vector X (reflectance intensities). With x = (o,
X1, X2, ... Xn-1), the various moments can be calculated as
follows:

-1 N-1
Mean:x:N jg(;(j 3
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The image features of coefficient of variation (CV,
defined as (standard deviation / mean) x 100), skewness, and
kurtosis are evaluated in this study. Software programs were
developed using the IDL programming language (Research
Systems, Colo.) for processing the multi—spectral images.

MuULTISPECTRAL IMAGE CLASSIFICATION

A general—purpose fuzzy inference system (Chao et d.,
1998) was applied to classify chicken skin tissue into normal
and tumor. The fuzzy inference process was implemented
with three operations: (1) fuzzify numerical inputs (e.g. CV,
skewness, kurtosis) using input membership functions;
(2) apply fuzzy operators to the antecedents of the rule base;
(3) perform implication, i.e. evaluate the consequent portion
of the rules. Step one operation is to translate the measured
numerical values of the image features into linguistic values
with corresponding membership grades. A set of
membership functions was constructed based on partition of
subspaces from correspondence graphs between image
features. The membership functions design alows the
boundary between two neighboring classes to form an
overlapping area, so that a feature has partial membership
grades in each class. A rule base maps linguistic inputs to
outputs. Each fuzzy characterization rule in the rule base can
be viewed as a conditional statement in the form of:

If (image feature measurements) Then (characterization) (8)

The condition part of arule consists of image features (e.g.
CV, skewness, kurtosis) of the chicken skin tissue. The
characterization part of aruleisalinguistic class name, such
as normal and tumor. Based on the result of pattern matching
between rule antecedents and input features, a number of
fuzzy rules are triggered in parallel with various values of
firing strength. The fuzzy process quantifies these actions.
The fuzzy inference engine, employing a combination of
max and min operations, can then be applied to determine the
level of certainty for pattern classification.

ucrass(Ck) =

max Min(Wesi(Xea), Lei(Xp2), - - - Lenk(Xen))  (9)

where nc ass(Cy) are the output membership grades for nor-
mal (C1) and tumor (Cy); Wwrai(Xp1), UF2j (Xp2), - - - UFnk(Xpn) are
the membership grades for the input features. The minimum
operator is used to limit the certainty of the overall condition
to that of the least certain observation. If the same character-
ization is prescribed by more than one selected rule, its cer-
tainty is set to the maximum of the individual rules. Then the
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collection of these possible characterization forms the fol-
lowing fuzzy set:

CLASS ={ucLass(C1)/Cy, teLass(C)/Ca} (10)

The Fuzzy Logic Toolbox (Mathworks Inc., Natick,
Mass.) was used to design the fuzzy classifiers.

REsuULTS AND DiscussioN
WAVELENGTH SELECTION

Hyperspectra image data was analyzed for the first
10 PCA bandsto select bands presenting the best contrast and
differences between tumors and normal skin tissue of the
chicken. The PCA bands varied depending on the amount of
statistical information presented by the chickens. The
selection of the more efficient PCA bands provided the
determination  of  eigenvectors and  eigenvalues
corresponding to the PCA bands and the associated statistical
analysis.

Figure 2 shows the weighed wavelengths distribution
corresponding to the eigenvector defined on chicken skin
tumors that provided the best contrast between tumors and
normal chicken skin. Two significant bands were observed:
47550 nm and 575+50 nm with low level of contribution
from the near infrared region. These bands correspond to
metmyoglobin and oxymyoglobin bands (Liu et al., 2000).
Direct near infrared region provided no information for the
presence of chicken skin tumor. The near infrared region was
not sensitive for the surface defects on the chicken (Park
et a., 1996). It can therefore be utilized as an invariant image
for masking and normalization of chicken carcassimages. A
filter at 705 nm was chosen to achieve this. Selection of the
wavelengths with the filters for the multispectral imaging
system using an adaptable three-band CCD camera included
the following: 465+10 nm, 575+10 nm, and 705+10 nm. (The
+10 nm designates the full-width—at—half—maximum
band-pass.)

MULTISPECTRAL IMAGE FEATURES

Figure 3 shows the correspondence between skewness and
coefficient of variation (CV) for normal skin tissues and
tumors. Data indicates that normal tissues have lower CV
than tumors. There was no normal skin tissue observed for
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Figure 2. Final eigenvectors for each of eight chickens, from
hyper spectral image analysis.
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Figure 3. Relationship between coefficient of variation and skewness for
normal and tumorous classes.

CV above 64. This observation arises from the high reflec-
tance intensity variation existing between exposed muscle
from the tumor center, the surrounding connective tissue, and
discolored (yellowish) skin. Similarly there was no tumor ob-
served for CV below 20. For this region, highly negative
skewness values are present due to the intensity saturation for
bright spots. The maximum skewness values were higher for
tumors than for normal tissue for CV between 20 and 64 be-
cause some discolored skin tissues exhibited lower reflec-
tance intensity in the blue-channel region and displaced the
peak of intensity distribution to the lower left hand compared
to normal skin tissue.

Figure 4 shows kurtosis versus CV for tumors and normal
tissues. In general, kurtosis was centered around zero for
normal chicken. As expected, kurtosis presented positive
high value for normal chicken skin tissue in bright spots.
Similar to skewnessin figure 3, tumor presented high kurtosis
valuefor CV above 20. Figure 5 shows skewness and kurtosis
for normal skin tissue and tumors are distributed along a
parabolic curve. Normal skin tissues have lower skewness
value than tumors (as seen in fig. 3). However, the data shown
in figure 5 reveals the difficulty of separating normal skin
tissue and tumor using only skewness and kurtosis. This
pattern may come from slight amounts of tumors in ROI's
assigned to the normal category.
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Figure 4. Relationship between coefficient of variation and kurtosis for
normal and tumor ous classes.
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CLASSIFICATION

The fuzzy classifiers are based on the observations noted
above. Figure 6 shows the membership functions for chicken
skin tumor classification. The fuzzy sets for the CV were
derived from data interpretation, i.e. no skin tumor observed
for CV below 20 and no normal skin tissue observed for CV
above 64. A fuzzy set with norma distribution (labeled
medium) was designed to cover CV between 20 to 70. These
fuzzy sets were overlapped between two neighboring classes,
proving partial membership in each class. A similar approach
was applied to derive fuzzy sets for the skewness. For the
feature kurtosis, two fuzzy sets were implemented. Based on
these fuzzy sets, the fuzzy classifier can be described by a set
of fuzzy rules. The following six rules (using CV and
skewness) were generated for classification of chicken skin
tumors:

R1: if (CV islow) and (skewness is medium) then

(normal).

R2: if (CV islow) and (skewness is high) then (hormal).

R3: if (CV ismedium) and (skewnessis|ow) then (tumor).

R4: if (CV is medium) and (skewness is medium) then

(normal).
R5: if (CV is medium) and (skewness is high) then
(tumor).

R6: if (CV is high) then (tumor).

For testing the fuzzy classifier, features of CV, skewness,
and kurtosis were first applied individually. Then pairs of
features were applied (three configurations), followed by one
configuration using al three features.

Table 1 compares the accuracy of fuzzy classifiers when
features of individual moments and combined moments were
used for classification of chicken skin tumor. Training results
were somewhat better than testing results, as is usually the
case. Both training and testing results showed improvement
when more features were used. Only the testing results will
be discussed because they represent a more realistic estimate
of a calibration’s future performance. The classification
accuracy for skin tumor varied from 31 to 64% when
individual featureswere used asinput to the fuzzy classifier.
This variation in accuracy indicated that individual features
couldn't be effectively used for chicken skin tumor
classification. The tumor classification accuracy was
improved to 86% when combined features of CV, skewness,
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Figure 6. Member ship functionsfor chicken skin tumor classification.
and kurt(?sswere used. The corresponding accuroacy fornor- ~ officient of variai on, 929 (92/100)  88% (46/52)  Training
mal ROI’s, using the combined features, was 91%. Compar- Skewness, Kurtosis 919% (620/678)  86% (44/51)  Testing

ing the results from different features, the combination of CV,

Table 1. Correct classification rate of fuzzy
classifier using different features.

Normal Skin Tumor

Coefficient of variation 81% (81/100) 69% (36/52)  Training
80% (542/678)  64% (33/51)  Testing

Skewness 87% (87/100)  42% (22/52) Training
83% (566/678)  31% (16/51)  Testing

Kurtosis 929% (92/100)  69% (36/52)  Training
84% (568/678)  63% (32/51)  Testing

Coefficient of variation, 82% (82/100) 81% (42/52) Training
Skewness 78% (529/678)  78% (40/51)  Testing
Coefficient of variation, 86% (86/100) 75% (39/52)  Training
Kurtosis 84% (570/678)  63% (32/51)  Testing
Skewness, Kurtosis 90% (90/100)  69% (36/52)  Training
84% (568/678)  65% (33/51)  Testing

vol. 18(1): 113-119

skewness, and kurtosis yielded the highest rate of correct
classification.

CONCLUSIONS

Chicken carcass images were examined by hyper— and
multi—spectral based image analysis. Principal component
analysis of ROI's of hyperspectral images of normal and
tumor areas provided the basis for selection of three
narrow—band wavelength regions for use in a common
aperture multi—spectral imaging system. Feature extraction
from the variability of ratioed multi—spectral images,
including mean, standard deviation, skewness, and kurtosis,
provided the basis for fuzzy logic classifiers, which were able
to separate normal from tumorous skin areas with increasing
accuracies as more features were used. In particular, use of
all three features gave successful detection rates of 91 and
86% for normal and tumorous tissue, respectively. These
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levels of classification accuracy would be useful in an online
inspection facility.

REFERENCES

Calnek, B. W., H. J. Barnes, C. W. Beard, W. M. Reid, and H. W.
Yoder. 1991. Diseases of Poultry, 386-484. Ames, lowa: lowa
State University Press.

Chao, K., B. Park, Y. R. Chen, W. R. Hruschka, and F. W. Wheaton.
2000. Design of a dual—-camera system for poultry carcasses
inspection. Applied Engineering in Agriculture 16(5): 581-587.

Chao, K., R. S. Gates, and R. G. Anderson. 1998.
Knowledge—based control systemsfor single stem rose
production — Part |: systems analysis and design. Transactions of
the ASAE 41(4): 1153-1161.

Chen, Y. R., W. R. Hruschka, and H. Early. 2000. A chicken carcass
inspection system using visible/near—infrared reflectance: in
plant trials. J. of Food Process Engineering 23(2): 89-99.

Dougherty, E. R. 1992. An Introduction to Morphological Image
Processing, 17-26. Bellingham, Wash.: SPIE Optical
Engineering Press.

OSHA.. 1999. Chicken disassembly — ergonomic considerations.
http://www.osha—sl c.gov/SLTC/poultryprocessing. U.S.
Department of Labor, Washington, D.C.

Kim, M. S, K. Chao, Y. R. Chen, D. Chan, and P. M. Mehl. 2000.
Hyperspectral imaging system for food safety: detection of fecal
contamination of apples. Proc. SPIE, 4206: 174-184.
Bellingham, Wash.: SPIE Optical Engineering Press.

120

Liu, Y., Y. R. Chen, and Y. Ozaki. 2000. Characterization of visible
spectral intensity variations of wholesome and unwholesome
chicken meats with two—dimension spectroscopy. Applied
Soectroscopy 54(4): 587-594.

Park, B., and Y. R. Chen. 1994. Intensified multi—spectral imaging
system for poultry carcass inspection. Transactions of the ASAE
37(6): 1983-1988.

Park, B, Y. R. Chen, M. Nguyen, and H. Hwang. 1996.
Characterizing multispectral imagings of tumors, bruised,
skin-torn, and wholesome poultry carcasses. Transactions of the
ASAE 39(5): 1993-1941.

Throop, J. A., and D. J. Aneshandey. 1995. Detection of internal
browning in apples by light transmittance. Proc. SPIE 2345:
152-165. Bellingham, Wash.: SPIE Optical Engineering Press.

USDA. 1984. A review of the slaughter regulations under the
Poultry Products Inspection Act. Regulations Office, Policy and
Program Planning, FSIS, USDA, Washington, D.C.

Wen, Z., and Y. Tao. 1998. Fuzzy—based determination of model
and parameters of dual—-wavelength vision system for on-ine
apple sorting. Optical Engineering 37(1): 293—299.

APPLIED ENGINEERING IN AGRICULTURE





